Category Archives: IDM

DR2: Cycling in Mud

Those who know I’m crazy about bikes might also know that before starting my engineering studies, all I did was cycling around and rolling myself in mud in mountain biking competitions. I have some very fond memories of a French Cup race where there was so much mud people would slide down the slopes on their backsides. Now that is what I call mountain biking!

Sliding down hills of your bike is one thing, but how do people actually ride through mud? With the right technical equipment and some driving skills it is possible to race through mud fields. Lets analyse how the champions do it!

Riding through mud

See, those who go furthest usually have high rpm, and go as straight as possible. The bike has narrow tyres with high spikes to avoid building up mud. They shift their weight to the back of the bike to have more traction.

For those who fail, they will most likely get their front wheel stuck of slide on their sides. Some unfortunate riders will get their bikes stopped by mud blocking the wheels in v-brakes or frame.

If this kid can ride his bike through that clay puddle, than certainly we could get a bike tractor through a rice field, couldn’t we?

The physics behind it

Estimation of cycling power

Power is the rate at which energy is used (energy over time) and is measured in watts. In cycling, energy is expressed in terms of work (such as how hard you have to work to ascend a climb). It’s a constant snapshot of your work rate at any given moment. […] A better measure, especially on climbs, is watts produced per kilogram of body weight.
How much better are Tour riders than the rest of us? A contender for the overall classification can produce just above 6 w/Kg on major climbs of the race. By comparison, a domestic pro could manage a best of 5-5.5w/Kg; a good, competitive amateur or masters’ racer can put out around 4w/Kg and an untrained person would struggle to produce 2.5w/Kg.



Design Research: Pedal-Powered Tractors

When speaking about agriculture mechanisation, we immediately thing about huge tractors, pumping up oil and spreading loads of bad chemicals on the fields.
Some farmers have taken the problem the other way around, and instead of relying on heavy machinery for light operations, they started building their own machines, powered by humans, not petrol. I have listed the farm hackers I’ve found on this post.

If you drive a car, you’re dragging a lump of metal that probably weighs 10–20 times as much as you do wherever you go. What a waste of energy! Go by bike and the metal you have to move around with you is more like 6–9kg for a lightweight racing bike or 11–20kg for a mountain bike or tourer, which is a fraction of your own weight. Better efficiency means you can further on the same amount of fuel. According to the classic Bicycling Science book by David Gordon Wilson et al: “A racing bicyclist at 32km/h (20mph) could travel more than 574 kilometers per liter (1,350 miles per US gallon) if there were a liquid food with the energy content of gasoline.” Explain That Stuff

The Culticycle

Farmers from the Farmhack community have developed this pedal-powered tractor to reduce the usage of their tractors. It is built out of bike parts and standard metal pieces, and features a belly-mount for interchangeable cultivating implements (weeder, seeder, etc.)

The Culticycle, a pedal-powered tractor developed by Farmhack
The Culticycle, a pedal-powered tractor developed by Farmhack
Description: A pedal powered tractor for cultivation and seeding, built from readily available lawn tractor, ATV, and bicycle parts. Speed is 3 – 4 mph depending on choice of gearing and pedaling speed. Better for operator’s body, less soil compaction, no fuel use, cheaper than a tractor; easily adaptable to specific needs

Problem Statement/ Functional Need: Cultivation only requires the movement of small amounts of soil, therefore very little power output. Small tractors are hard on the body of the farmer, cause soil compaction, cost large amounts of money, are complicated to fix, and provide significantly more power than is needed for many seeding and cultivating jobs. Cultivation with a pedal powered machine provides sufficient power, a less physically damaging experience for the operator, and is more environmentally sustainable.

The Aggrozouk – previously known as Bicitractor

The Aggrozouk has been developed by the French-speaking collective of farmers l’Atelier Paysan, who develop tools for organic farming. The machine has been further developed during the POC21 eco innovation camp. They held a prototyping workshop in early 2016 so that the farmers could build their own Aggrozouk tractor while learning the skills to repair and upgrade it.

The Aggrozouk pedal-powered tractor with electrical assistance
The Aggrozouk pedal-powered tractor with electrical assistance

PR6: Open-source and robots for agriculture

Open-source Agricultural Projects and Hackerspaces

La notion de brevet, donc de notre point de vue de confiscation au profit d’individus ou de groupes, est contraire à notre volonté de contribuer à la production et la diffusion de Biens Communs. Nous estimons que la créativité est histoire de cheminements, d’influences, de rencontres, de glanages, bref, par essence d’une richesse collective, humaine, d’un génie créatif que nous avons choisi de ne pas garder pour nous. Toutes nos réalisations sont donc diffusées sous licence libre, pour une libre adaptation, pour que les machines et matériels soient vivants, appropriés et appropriables. L’Atelier Paysan

Aggrozouk/Bicitractor pedal powered tractor with electrical assistance
Aggrozouk/Bicitractor pedal-powered tractor with electrical assistance

L’Atelier Paysan: building open-source farm machinery for organic farmers, developers of the Bicitractor/Aggrozouk pedal-powered tractor with electrical assistance

TechAguru: building small-scale open-source solutions in the Philippines to bring precision agriculture to farmers.

Hacker Farm: Japanese countryside farm and hackerspace, have a project on rice paddy water level monitoring.

Farm Hack: Worldwide community of farmers that build their own agricultural machinery, famous for Culticycle pedal powered tractor

Good Tech: Community of makers testing prototypes in a realistic environment. Accelerator program for “bringing sustainable tech into mainstream“.

Fietswieders: “a lowtech agricultural machinery, based on open source to make the life of (organic) farmers more fun!” by Dutch community, using bicycles to make machines suited for work lying in prone position (facing the ground).

Obviously better technology will only make a difference if it´s actually used by many people. Therefore scaling new products is a key aspect of what we do. GoodTech

Culticycle pedal-powered tractor
Culticycle pedal-powered tractor

Small Farming Robots

For decades, farm machinery has targeted industrial-sized farmers, underpinning the “get big or get out” ag model of consolidation. Now, the miniaturization of farm machinery may be the ag-tech counter-trend that actually encourages smaller, more diverse farms.

Weeding robot Naio
Weeding robot Naio

Even in poorer nations, farm labor is not always available, as people are flocking to cities in increasing numbers. Which brings us to HelloTractor. Calling itself the Uber of Farm Machinery, this startup based in Washington, DC and Nairobi, Kenya, allows farmers to request farm machinery, just as you might “hail” a car with Uber. HelloTractor’s delivery system is tied to its own small, smart tractors, which monitor usage and location for the security of the owner. Owners can help offset the cost of their purchase by renting it out. And because labor shortages on farms can lead to poor harvests and lost income, the wider availability of these size-appropriate machines can help whole communities grow.

Yes, big machines may have allowed a single person to farm miles of land. But they also created farms low on diversity. Small machines could not only help large farms to become more diverse and ecologically sound, they can be a huge help to small, diversely planted farms that suffer from too little machine solutions to help them. Source

Rowbot: robots for small-scale agriculture in corn farming

Agribotix: Drones for agriculture

Naio: robots for small-scale agriculture

Prospero: agricultural hexapod robot prototype, designed to work in swarms

PR4: System of Rice Intensification

The System of Rice Intensification – known as SRI – is a set of agricultural methods for optimising resources developed in the 1980’s in Madagascar. SRI aims to increase the rice farming yields while reducing inputs such as water, seeds and fertilisers, so that rice farming becomes more profitable to the farmers. Unlike the techniques inherited from the Green Revolution, SRI does not depend on genetics engineering and chemicals. Depending on the countries and conditions, SRI can improve the yields from 20% to 100% compared to conventional farming.

SRI involves significantly reducing the number of rice seeds planted, transplanting them to the fields when they are much younger than usual, using different amounts of water at critical times of their growth cycle, and improving soil conditions with organic manure. […]

In Tamil Nadu, farmers are experiencing similar increases and are paying less. “Our chief minister’s aim is to get double the yield and triple the income of farmers using SRI. Traditional farmers use 30kg of seeds [compared with] 3kg by the SRI method” The Guardian

SRI Characteristics

Transplantation: In SRI, young seedlings are planted individually, instead of transplanting several mature seedlings. Thus, the seed requirements are 90% lower than in traditional rice farming. The seedlings are planted in a matrix pattern (25x25cm) with a wide spacing between the rows to allow for an increased exposure to the sun and wind, as well as better access to soil nutrients. The roots have to be intact and the seedling is planted shallowly (1-2cm instead of 3-4cm).

 With SRI, optimum spacing can be up to 50 x 50 cm (4 plants per sq.m) for very fertile soils. Best spacing is a function of soil fertility. Source: SRI Issue 6, 2009

Water management: In SRI, the fields are not permanently flooded, reducing the water consumption of the fields by up to 50% and decreasing methane emissions by oxygenating the soil. The cracks in the soil occurring when the fields dry allow for better oxygenation of the soil promoting root growth. When the fields are not permanently flooded, the plants also grow stronger stalks, which makes them more productive and resilient to bad weather conditions.

Weeding: SRI calls for regular weeding with rotary tools, which also aerates the soil.

Fertilisers: In SRI, the use of synthetic fertilisers and pesticides is reduced or banished while promoting the use of organic fertilisers such as green manure and compost. The nutrients are obtained by micro-organisms.

Sources SRI India / TNAU / various


SRI is not a standardised technological method, it is adapted from country to country and adapted to local conditions. It has lead to larger yields with lower inputs in many farms, although in other places it has been abandoned as not more efficient than traditional methods.

Adoption: As with any new technology and radically different approach to farming, farmers have to change their habitual way of farming for SRI, which makes it difficult to adopt.

Labour: In the beginning, SRI might require more labour for transplanting and weeding. Once the farmers are experienced in SRI patterns it does not require more labour, some farmers report requiring less labour.

Automation: The existing machines for rice transplanting are made for transplanting several seedlings at once, in a narrow matrix.
If a machine adapted to SRI can be built, the adoption would be easier as it will decrease labour requirements.

Success stories in Bihar (2013)

SRI history in Tamil Nadu

The Department of Agriculture of the Government has included SRI in all existing and new schemes funded by Governement of India that focus on increasing food production. […]
Further trials conducted at Aduthurai and Thanjavur showed that adopting all SRI components resulted in 48.8 per cent higher yield at Aduthurai and 35.8 per cent higher yield at Thanjavur when compared with conventional cultivation. A systematic study also showed that among the SRI components, the major effect was by weeder-use followed by single seedling per hill. SRI India


SRI has been introduced in Tamil Nadu in the early 2000s. However, a similar practise has been developed by local farmers over a century ago. Single-seedling methods and the Gaja methods have been known by farmers for a long time. The main difference between Gaja practises and SRI is that the seedlings are transplanted when mature in Gaja compared to young seedlings in SRI.

Today SRI is known to many rice farmers of Tamil Nadu as ‘Ottrai Natru Nadavu’ (single seedling planting). This recognition has come through SRI. But, to our surprise,
we find that single seedling planting was known100 years ago in Tamil Nadu. […] Single-seedling cultivation appears to have been developed by Mr. Aparanam Pillai (location not known) during 1905-06 season, and the  Gaja planting method,
which  also  included  single-seedling planting, was apparently developed by Mr. T.S. Narayanasamy Iyer of Thirukkaruhavur in 1911. Source: SRI Issue 6, 2009

PR3: Traditional Processes of Rice Planting

In order to develop a rice-transplanting machine, I will have to understand how it is traditionally done. There are many methods to increase the yields of rice crops, however, if we come up with a disruptive technology, the farmers won’t adopt it.

A local student from Amrita University is also working on the rice-planting machine project, and has been in the village to understand how the woman plant rice in this particular village.


Rice production Cycle, from IRRI
Rice production Cycle, from IRRI

Traditional Process

Land Preparation

The rice field is irrigated for several days, then the field is ploughed either by tractor or animal power. This will kill weeds and mix the soil. The field is then flooded for 10-14 days then puddled, that is, the soil is mixed with the water into mud. The surface is then smoothed by harrowing several times. Two days before planting, the field is levelled by dragging a wooden plank behind an animal or a tractor.

On average, it takes 1,432 liters of water to produce 1 kg of rice in an irrigated lowland production system. Irrigated rice receives an estimated 34−43% of the total world’s irrigation water, or about 24−30% of the entire world’s developed fresh water resources. Source IRRI


Seeds are grown in seedbeds, also called nurseries, very close to each other, before being transplanted. The nurseries take up 5-10% of the rice fields. Transplanting requires around 30-50kg of seeds per hectare.

Wet-bed: Pre-germinated seeds are sown in a strip of flooded land, then covered in manure and fertiliser. The seedlings are transplanted after 15 to 21 days. Requires 40kg of seeds for 1ha.
This is the traditional method used in the village we are working on.

Dry-bed: Seeds are grown on raised strips of land, kept humid by irrigation. The seedlings are transplanted after 15 to 21 days. Requires 60-80kg of seeds for 1ha.

Dapog or Mat method: Nurseries are prepared on a flat firm surface, covered with banana leaves of plastic film. The seedbed is covered in burnt paddy husk or compost, and pre-germinated seeds are sown with a thickness of around 6 seeds, then the seeds are flattened. The seedlings are transplanted after 9 to 14 days. Requires 1% of the fields and 40-50kg of seeds for 1ha.
This a method used for mechanised transplanting. Modified methods exist to lessen the water and seed use.

Rice Transplanting

After around 20 days, the seedlings are transplanted into the flooded paddies. The seedlings are harvested into bunches, then a few seedlings are planted in an approximate square pattern every 10-20cm. Manual transplantation requires around 30 person days to plant one hectare of rice field, while mechanical transplantation requires 1 person day for a field of one hectare. However, mechanical transplantation requires a specific type of nursery.

Plant spacing is an important factor in transplanting rice. Proper spacing can increase the yield by 25−40% over improper spacing. You will also save money on inputs, labor, and materials. Source IRRI


When the crop is mature, the fields are drained and the rice is harvested by hand (mechanised in larger fields and industrialised countries)

Grain Preparation

The rice is dried then milled to remove the outer layers of the grain and obtain brown rice. To obtain white rice, bran layers are rubbed off in a huller machine.

Sources IRRI / MadeHow

PR5: Existing Machines for Rice Transplanting

I will be working on a machine that does already exist in certain forms on the market, as well as prototypes. Here are some machines found online.

The advantages of mechanised transplanting according to Kubota manufacturer.
The advantages of mechanised transplanting according to Kubota manufacturer.


Hand Cranked Rice Transplanter

Manual rice transplanter from Rajkumar Agro Machines
Manual rice transplanter from Rajkumar Agro Machines
  • Operation type: Manual
  • # Rows: 2
  • Rice nursery type: ?
  • Row distance: 250 mm
  • Planting distance: Adjustable.
  • Weight: 20 kg.
  • Turning radius: 210mm
  • Max. planting depth: 65mm
  • Max. planting frequency: 120/ minute
  • Resistance of crank: 1.5—2kg
  • Resistance of moving: 1—2kg
  • Planting speed: about 530 square meters/hour

Walk-behind Motorised Transplanter

Wallk-behind motorised transplanting machine.
Walk-behind motorised transplanting machine from Kubota. Picture from IRRI.
  • Operation type: Gasoline engine walk-behind
  • Rice nursery type: mat
  • # Rows: 4
  • Row distance: 300 mm
  • Planting distance: *12,14,16,18,21cm
  • Weight: 160kg
  • Turning radius: ?
  • Max. planting depth: 3.7 (adjustable)
  • Max planting speed: 0.77m/s eq. 385/minute frequency
  • Planting speed: 0.22 – 0.52 acre/hour

High Performance Paddy Transplanter

High Performance Paddy Transplanter from Amisy Farming Machine
High Performance Paddy Transplanter from Amisy Farming Machine
  • Operation type: Diesel engine
  • Rice nursery type: mat
  • # Rows: 6-8
  • Row distance: 238 mm / 300 mm
  • Planting distance: 120-140mm
  • Weight: 300 kg / 360 kg  / 410 kg
  • Turning radius: ?
  • Max. planting depth: ?
  • Max planting frequency: ?
  • Planting speed: 0.2hectare/h // 0.27hectare/h // 0.24-0.34hectare/h